40 research outputs found

    Comparative population structure of <i>Plasmodium malariae</i> and <i>Plasmodium falciparum</i> under different transmission settings in Malawi

    Get PDF
    &lt;b&gt;Background:&lt;/b&gt; Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures. &lt;BR/&gt; &lt;b&gt;Methods:&lt;/b&gt; Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI), population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters. &lt;BR/&gt; &lt;b&gt;Results:&lt;/b&gt; Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008) and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11) and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission setting. &lt;BR/&gt; &lt;b&gt;Conclusions:&lt;/b&gt; The extent of similarity between P. falciparum and P. malariae population structure described by the high level of multiple infection, the lack of significant population differentiation or haplotype clustering and lack of linkage disequilibrium is surprising given the differences in the biological features of these species that suggest a reduced potential for out-crossing and transmission in P. malariae. The absence of a rise in P. malariae MOI with increased transmission or a reduction in MOI with age could be explained by differences in the duration of infection or degree of immunity compared to P. falciparum

    Antibody to P. falciparum in Pregnancy Varies with Intermittent Preventive Treatment Regime and Bed Net Use

    Get PDF
    Antibodies towards placental-binding P. falciparum are thought to protect against pregnancy malaria; however, environmental factors may affect antibody development.Using plasma from pregnant Malawian women, we measured IgG against placental-binding P. falciparum parasites by flow cytometry, and related results to intermittent preventive treatment (IPTp) regime, and bed net use. Bed net use was associated with decreased antibody levels at mid-pregnancy but not at 1 month post partum (1 mpp). At 1 mpp a more intensive IPTp regime was associated with decreased antibody levels in primigravidae, but not multigravidae.Results suggest bed nets and IPTp regime influence acquisition of pregnancy-specific P. falciparum immunity

    Comparison of infant malaria incidence in districts of Maputo province, Mozambique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is one of the principal health problems in Mozambique, representing 48% of total external consultations and 63% of paediatric hospital admissions in rural and general hospitals with 26.7% of total mortality. <it>Plasmodium falciparum </it>is responsible for 90% of all infections being also the species associated with most severe cases. The aim of this study was to identify zones of high malaria risk, showing their spatially and temporal pattern.</p> <p>Methods</p> <p>Space and time Poison model for the analysis of malaria data is proposed. This model allows for the inclusion of environmental factors: rainfall, temperature and humidity as predictor variables. Modelling and inference use the fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulation techniques. The methodology is applied to analyse paediatric data arising from districts of Maputo province, Mozambique, between 2007 and 2008.</p> <p>Results</p> <p>Malaria incidence risk is greater for children in districts of Manhiça, Matola and Magude. Rainfall and humidity are significant predictors of malaria incidence. The risk increased with rainfall (relative risk - RR: .006761, 95% interval: .001874, .01304), and humidity (RR: .049, 95% interval: .03048, .06531). Malaria incidence was found to be independent of temperature.</p> <p>Conclusions</p> <p>The model revealed a spatial and temporal pattern of malaria incidence. These patterns were found to exhibit a stable malaria transmission in most non-coastal districts. The findings may be useful for malaria control, planning and management.</p

    T-cell epitope polymorphisms of the Plasmodium falciparum circumsporozoite protein among field isolates from Sierra Leone: age-dependent haplotype distribution?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the context of the development of a successful malaria vaccine, understanding the polymorphisms exhibited by malaria antigens in natural parasite populations is crucial for proper vaccine design. Recent observations have indicated that sequence polymorphisms in the C-terminal T-cell epitopes of the <it>Plasmodium falciparum </it>circumsporozoite protein (Pf<it>csp</it>) are rather low and apparently stable in low endemic areas. This study sought to assess the pattern in a malaria endemic setting in Africa, using samples from Freetown, Sierra Leone.</p> <p>Methods</p> <p>Filter-paper blood samples were collected from subjects at a teaching hospital in Freetown during September–October 2006 and in April–May 2007. The C-terminal portion of the Pf<it>csp </it>gene spanning the Th2R and Th3R epitopes was amplified and directly sequenced; sequences were analysed with subject parameters and polymorphism patterns in Freetown were compared to that in other malaria endemic areas.</p> <p>Results and Discussion</p> <p>Overall, the genetic diversity in Freetown was high. From a total of 99 sequences, 42 haplotypes were identified with at least three accounting for 44.4% (44/99): the 3D7-type (19.2%), a novel type, P-01 (17.2%), and E12 (8.1%). Interestingly, all were unique to the African sub-region and there appeared to be predilection for certain haplotypes to distribute in certain age-groups: the 3D7 type was detected mainly in hospitalized children under 15 years of age, while the P-01 type was common in adult antenatal females (Pearson Chi-square = 48.750, degrees of freedom = 34, <it>P </it>= 0.049). In contrast, the single-haplotype predominance (proportion > 50%) pattern previously identified in Asia was not detected in Freetown.</p> <p>Conclusion</p> <p>Haplotype distribution of the T-cell epitopes of Pf<it>csp </it>in Freetown appeared to vary with age in the study population, and the polymorphism patterns were similar to that observed in neighbouring Gambia, but differed significantly at the sequence level from that observed in Asia. The findings further emphasize the role of local factors in generating polymorphisms in the T-cell epitopes of the <it>P. falciparum </it>circumsporozoite protein.</p

    To what extent can traditional medicine contribute a complementary or alternative solution to malaria control programmes?

    Get PDF
    Recent studies on traditional medicine (TM) have begun to change perspectives on TM effects and its role in the health of various populations. The safety and effectiveness of some TMs have been studied, paving the way to better collaboration between modern and traditional systems. Traditional medicines still remain a largely untapped health resource: they are not only sources of new leads for drug discoveries, but can also provide lessons and novel approaches that may have direct public-health and economic impact. To optimize such impact, several interventions have been suggested, including recognition of TM's economic and medical worth at academic and health policy levels; establishing working relationships with those prescribing TM; providing evidence for safety and effectiveness of local TM through appropriate studies with malaria patients; spreading results for clinical recommendations and health policy development; implementing and evaluating results of new health policies that officially integrate TM

    Sequence Conservation in Plasmodium falciparum α-Helical Coiled Coil Domains Proposed for Vaccine Development

    Get PDF
    BACKGROUND: The availability of the P. falciparum genome has led to novel ways to identify potential vaccine candidates. A new approach for antigen discovery based on the bioinformatic selection of heptad repeat motifs corresponding to alpha-helical coiled coil structures yielded promising results. To elucidate the question about the relationship between the coiled coil motifs and their sequence conservation, we have assessed the extent of polymorphism in putative alpha-helical coiled coil domains in culture strains, in natural populations and in the single nucleotide polymorphism data available at PlasmoDB. METHODOLOGY/PRINCIPAL FINDINGS: 14 alpha-helical coiled coil domains were selected based on preclinical experimental evaluation. They were tested by PCR amplification and sequencing of different P. falciparum culture strains and field isolates. We found that only 3 out of 14 alpha-helical coiled coils showed point mutations and/or length polymorphisms. Based on promising immunological results 5 of these peptides were selected for further analysis. Direct sequencing of field samples from Papua New Guinea and Tanzania showed that 3 out of these 5 peptides were completely conserved. An in silico analysis of polymorphism was performed for all 166 putative alpha-helical coiled coil domains originally identified in the P. falciparum genome. We found that 82% (137/166) of these peptides were conserved, and for one peptide only the detected SNPs decreased substantially the probability score for alpha-helical coiled coil formation. More SNPs were found in arrays of almost perfect tandem repeats. In summary, the coiled coil structure prediction was rarely modified by SNPs. The analysis revealed a number of peptides with strictly conserved alpha-helical coiled coil motifs. CONCLUSION/SIGNIFICANCE: We conclude that the selection of alpha-helical coiled coil structural motifs is a valuable approach to identify potential vaccine targets showing a high degree of conservation

    Impact of RTS,S/AS02A and RTS,S/AS01B on Genotypes of P. falciparum in Adults Participating in a Malaria Vaccine Clinical Trial

    Get PDF
    Objective:RTS,S, a candidate vaccine for malaria, is a recombinant protein expressed in yeast containing part of the circumsporozoite protein (CSP) sequence of 3D7 strain of Plasmodium falciparum linked to the hepatitis B surface antigen in a hybrid protein. The RTS,S antigen is formulated with GSK Biologicals\u27 proprietary Adjuvant Systems AS02A or AS01B. A recent trial of the RTS,S/AS02A and RTS,S/AS01B vaccines evaluated safety, immunogenicity and impact on the development of parasitemia of the two formulations. Parasite isolates from this study were used to determine the molecular impact of RTS,S/AS02A and RTS,S/AS01B on the multiplicity of infection (MOI) and the csp allelic characteristics of subsequent parasitemias.Design:The distribution of csp sequences and the MOI of the infecting strains were examined at baseline and in break-through infections from vaccinated individuals and from those receiving a non-malarial vaccine.Setting:The study was conducted in Kombewa District, western Kenya.Participants:Semi-immune adults from the three study arms provided isolates at baseline and during break-through infections.Outcome:Parasite isolates used for determining MOI and divergence of csp T cell&ndash;epitopes were 191 at baseline and 87 from break-through infections.Results:Grouping recipients of RTS,S/AS01A and RTS,S/AS02B together, vaccine recipients identified as parasite-positive by microscopy contained significantly fewer parasite genotypes than recipients of the rabies vaccine comparator (median in pooled RTS,S groups: 3 versus 4 in controls, P = 0.0313). When analyzed separately, parasitaemic individuals in the RTS,S/AS01B group, but not the RTS,S/AS02A group, were found to have significantly fewer genotypes than the comparator group. Two individual amino acids found in the vaccine construct (Q339 in Th2R and D371 in Th3R) were observed to differ in incidence between vaccine and comparator groups but in different directions; parasites harboring Q339 were less common among pooled RTS,S/AS vaccine recipients than among recipients of rabies vaccine, whereas parasites with D371 were more common among the RTS,S/AS groups.Conclusions:It is concluded that both RTS,S/AS vaccines reduce multiplicity of infection. Our results do not support the hypothesis that RTS,S/AS vaccines elicit preferential effects against pfcsp alleles with sequence similarity to the 3D7 pfcsp sequence employed in the vaccine construct

    Drug coverage in treatment of malaria and the consequences for resistance evolution - evidence from the use of sulphadoxine/pyrimethamine

    Get PDF
    BACKGROUND\ud \ud It is argued that, the efficacy of anti-malarials could be prolonged through policy-mediated reductions in drug pressure, but gathering evidence of the relationship between policy, treatment practice, drug pressure and the evolution of resistance in the field is challenging. Mathematical models indicate that drug coverage is the primary determinant of drug pressure and the driving force behind the evolution of drug resistance. These models show that where the basis of resistance is multigenic, the effects of selection can be moderated by high recombination rates, which disrupt the associations between co-selected resistance genes.\ud \ud METHODS\ud \ud To test these predictions, dhfr and dhps frequency changes were measured during 2000-2001 while SP was the second-line treatment and contrasted these with changes during 2001-2002 when SP was used for first-line therapy. Annual cross sectional community surveys carried out before, during and after the policy switch in 2001 were used to collect samples. Genetic analysis of SP resistance genes was carried out on 4,950 Plasmodium falciparum infections and the selection pressure under the two policies compared.\ud \ud RESULTS\ud \ud The influence of policy on the parasite reservoir was profound. The frequency of dhfr and dhps resistance alleles did not change significantly while SP was the recommended second-line treatment, but highly significant changes occurred during the subsequent year after the switch to first line SP. The frequency of the triple mutant dhfr (N51I,C59R,S108N) allele (conferring pyrimethamine resistance) increased by 37% - 63% and the frequency of the double A437G, K540E mutant dhps allele (conferring sulphadoxine resistance) increased 200%-300%. A strong association between these unlinked alleles also emerged, confirming that they are co-selected by SP.\ud \ud CONCLUSION\ud \ud The national policy change brought about a shift in treatment practice and the resulting increase in coverage had a substantial impact on drug pressure. The selection applied by first-line use is strong enough to overcome recombination pressure and create significant linkage disequilibrium between the unlinked genetic determinants of pyrimethamine and sulphadoxine resistance, showing that recombination is no barrier to the emergence of resistance to combination treatments when they are used as the first-line malaria therapy
    corecore